
AMD-DPDK WhiteCloud Traffic Tests

About this Document

This document is a report on the DPDK traffic tests performed in Dell servers using AMD processors and Intel network adapters. These

tests were performed in order to inspect the maximum amount of traffic that can be output, in Gib/s and in pkt/s , by virtual machines

running inside a WhiteCloud deployment to an external network while using a DPDK dataplane.

Our tests consisted in hosting several Ubuntu virtual machines on a single server and having them generate as much outwards traffic as

possible, using the pktgen tool, a DPDK packet generation tool. The virtual computing and networking components and configurations

needed to perform these tests were provided by Docker containers running Openstack services; these were part of a larger WhiteCloud

(WhiteStack’s Openstack distribution) Yungay deployment.

The objective of this report is to disclose the characteristics of the environment used for the tests, explain the different configurations used

for WhiteCloud and OVS in order to get the most amount of outgoing traffic possible, display and explore the obtained results and, finally,

present a brief discussion about the scope and limitations of the test, including some possible next steps.

Lab Environment

Physical Environment

The physical environment that was set up to run our tests was composed of a single Dell PowerEdge R7525 server, EPYC-05 , connected

to two Dell EMC Networking OS10 Switches. A diagram explaining the lab environment an its connections can be seen below.

Each ens interface pair shown connected to the server on Figure 1, red for ensXf0 and blue for ensXf1 , represent both ports of an Intel

E810-C Network adapter with a 100Gb combined data rate. Four network adapters were used on this server, giving us the ability to support

Figure 1 - Lab Physical Environment

up to 400Gb of outgoing traffic at the same time. As part of our traffic test, we wanted to attempt to check if WhiteCloud's DPDK network

capabilities were able to maintain outbound network traffic consistently close to this upper limit.

Virtual Environment

For our tests, we needed to generate a large amount of packages to simulate heavy network traffic. To achieve this, our approach was to

build multiple virtual machines inside the server, have them generate as much packages as possible and direct all the generated traffic

outwards.

In order to count with the virtualization tools needed for our VM approach, EPYC-05 was configured as a host in an WhiteCloud

deployment, WhiteStack’s own dockerized Openstack distribution. This cloud was comprised of four other hosts and a virtual machine. The

VM was configured as the cloud’s controller node, leaving all other hosts, and therefore EPYC-05 , as purely compute nodes. Once the

cloud was deployed EPYC-05 counted with the Openstack services needed to build virtual machines and provide networking for them,

deployed as docker containers.

To generate traffic, we built multiple VMs in the QEMU hypervisor provided by the Openstack compute services. These virtual machines

were set up to run the pktgen DPDK tool, which is software specifically designed for DPDK traffic tests. Pktgen generates traffic and

directs it to each of the VMs virtual interfaces, then we use OVS flows to direct all traffic from the VMs virtual interfaces to the server’s

physical interfaces. Finally, all traffic is sent to an external direction. A representation of the virtual environment is show on Figure 2.

Configurations

EPYC-05 Bios Configurations

The server was configured with one NUMA per socket, resulting in sixteen NUMA groups matching the CCD groups. Each NUMA was

conformed of eight physical cores, meaning, sixteen processing units. The resulting topology can be se seen in the diagram below.

Figure 2 - Software Environment on EPYC-05

In our tests, we decided to attempt saturating the port of a network adapter while only using cores from a single NUMA. We speculated that

the generation and transportation of the amount of packages needed to reach the maximum data rate, could be handled successfully with

eight vCPUs. Also, having all processes related to this test running on cores as close to each other as possible decreased any delays

brought on by physical distance. We decided to use the NUMAs closest to the sockets where our 100Gb network adapters were connected

for similar reasons. To check the PCIs of the interfaces running on DPDK mode, we made use of the dpdk-devbind.py tool.

Crosschecking these PCIs with Figure 3, we could see that our tests will be focused on NUMAs 2, 3, 4, 5, 8, 9, 12 and 13.

These NUMAs were conformed by the following cores:

Grub Configs

As part of our tests, we needed to isolate some virtual CPUs in order to dedicate them to specific tasks. All vCPUs on the particular NUMAs

were traffic would be going through, were isolated . Also, we configured hugepages for DPDK to use. This was done by editing the contents

Figure 3 - Server Topology

1

2

3

4

5

6

7

8

9

10

11

12

~$ dpdk-devbind.py --status

Network devices using DPDK-compatible driver

==

0000:21:00.0 'Ethernet Controller E810-C for QSFP 1592' drv=vfio-pci unused=ice,uio_pci_generic

0000:21:00.1 'Ethernet Controller E810-C for QSFP 1592' drv=vfio-pci unused=ice,uio_pci_generic

0000:41:00.0 'Ethernet Controller E810-C for QSFP 1592' drv=vfio-pci unused=ice,uio_pci_generic

0000:41:00.1 'Ethernet Controller E810-C for QSFP 1592' drv=vfio-pci unused=ice,uio_pci_generic

0000:a1:00.0 'Ethernet Controller E810-C for QSFP 1592' drv=vfio-pci unused=ice,uio_pci_generic

0000:a1:00.1 'Ethernet Controller E810-C for QSFP 1592' drv=vfio-pci unused=ice,uio_pci_generic

0000:e2:00.0 'Ethernet Controller E810-C for QSFP 1592' drv=vfio-pci unused=ice,uio_pci_generic

0000:e2:00.1 'Ethernet Controller E810-C for QSFP 1592' drv=vfio-pci unused=ice,uio_pci_generic

1

2

3

4

5

6

7

8

9

~$ lscpu | grep "NUMA" | grep -e node2 -e node3 -e node4 -e node5 -e node8 -e node9 -e node12 -e node13

CCD node2 CPU(s): 16-23,144-151

CCD node3 CPU(s): 24-31,152-159

CCD node4 CPU(s): 32-39,160-167

CCD node5 CPU(s): 40-47,168-175

CCD node8 CPU(s): 64-71,192-199

CCD node9 CPU(s): 72-79,200-207

CCD node12 CPU(s): 96-103,224-231

CCD node13 CPU(s): 104-111,232-239

of /etc/default/grub to the following:

To apply these configurations, we ran the update-grub command and rebooted the server:

WhiteCloud Configurations

For the tests, we configured WhiteCloud to deploy Openstack with DPDK networking. The general configurations for the WhiteCloud

deployment were the following:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

~$ cat /etc/default/grub

GRUB_DEFAULT=0

GRUB_TIMEOUT_STYLE=hidden

GRUB_TIMEOUT=0

GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian`

GRUB_CMDLINE_LINUX_DEFAULT=""

GRUB_CMDLINE_LINUX="default_hugepagesz=1G hugepagesz=1G hugepages=1600 transparent_hugepage=never iommu=pt"

GRUB_CMDLINE_LINUX="$GRUB_CMDLINE_LINUX intel_iommu=on isolcpus=0,16,17,18,19,20,21,22,23,24,25,26,27,28,29,

30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,96,97,

98,99,100,101,102,103,104,105,106,107,108,109,110,111,144,145,146,147,148,149,150,151,152,153,154,155,156,

157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,192,193,194,195,196,197,198,199,

200,201,202,203,204,205,206,207,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239

nohz=on nohz_full=0,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,

45,46,47,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,96,97,98,99,100,101,102,103,104,105,106,107,108,109,

110,111,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,

169,170,171,172,173,174,175,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,224,225,226,227,

228,229,230,231,232,233,234,235,236,237,238,239 rcu_nocbs=0,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,

32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,96,97,98,99,

100,101,102,103,104,105,106,107,108,109,110,111,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,

159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,192,193,194,195,196,197,198,199,200,201,

202,203,204,205,206,207,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239 rcu_nocb_poll

numa_balancing=disable nmi_watchdog=1 audit=0 nosoftlockup hpet=disable tsc=reliable selinux=0

processor.max_cstate=1"

1

2

sudo update-grub

sudo reboot

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

/etc/whitecloud$ cat cloud_configuration.yml

##

Cloud Configuration

##

Generic Configuration

neutron_plugin_agent: "openvswitch"

nova_console: "spice"

enable_neutron_provider_networks: yes

##

Networks

##

The network interface is the main "father" interface. All other interfaces inherit from it,

if not changed explicitly.

network_interface: eno8303

#

Neutron Network

Used to provide external networking to neutron. Shouldn’t be exposed publicly to avoid connectivity issues.

neutron_external_interface: ens3

The specific DPDK configurations needed for EPYC-05 were specified in the inventory file:

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

##

VIPs and TLS

##

Internal VIP (mandatory)

It needs to be a free IP address, belonging to the api_interface subnet

kolla_internal_vip_address: 10.100.44.4

enable_cinder: no

enable_grafana: yes

enable_prometheus: yes

enable_prometheus_server: yes

enable_prometheus_alertmanager: no

enable_prometheus_snmp_webhook: no

enable_ceilometer_prometheus_pushgateway: no

docker_disable_default_network: no

docker_disable_default_iptables_rules: no

docker_disable_ip_forward: no

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

/etc/whitecloud$ cat inventory.yml

##

Cloud Inventory File

##

roles:

 control:

 - dell-wc-lab-cont

 compute:

 - EPYC05

 network:

 - dell-wc-lab-cont

 monitoring:

 - dell-wc-lab-cont

 storage:

 - dell-wc-lab-cont

 neutron:

 - EPYC05

targets:

 common:

 ansible_become: yes

 dell-wc-lab-cont:

 network_interface: ens4

 ansible_host: 10.100.41.216

 ansible_user: ubuntu

 host_needs_switching: no

 ovsdpdk_extra_volumes: '{{ default_extra_volumes }}'

 EPYC05:

 ansible_host: 10.100.1.35

 ansible_user: whitestack

 ansible_become_pass: whitestack

 enable_ovs_dpdk: yes

 enable_openvswitch: yes

 ovs_datapath: "netdev"

As mentioned before, we specified to WhiteCloud which interfaces we wanted to configure and which DPDK compatible driver to use with

them. We also specified which vCPUs of the server were going to be used as OVS and PMD cores. Additionally, we mapped each DPDK

interface to a single bridge, with the objective to keep the traffic running through these interfaces separate.

Trafic Tests

After correctly configuring our servers and deploying our WhiteCloud, EPYC-05 contained the Openstack docker containers related to the

hosting and networking of virtual machines. The containers most relevant to our tests were the nova_libvirt and ovsdpdk_vswitchd

containers. In order to have a greater control of the configurations for our tests, instead of managing the compute and network elements

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

 neutron_external_interface: "ens2f0,ens2f1,ens3f0,ens3f1,ens6f0,ens6f1,ens7f0,ens7f1"

 neutron_bridge_name: "br-ex,br-ex2,br-ex3,br-ex4,br-ex5,br-ex6,br-ex7,br-ex8"

 tunnel_interface: "br-ex"

 ovs_dpdk_conf:

 ovs:

 bridge_mappings: "physnet1:br-ex,physnet2:br-ex2,physnet3:br-ex3,physnet4:br-ex4,physnet5:br-ex5,

physnet6:br-ex6,physnet7:br-ex7,physnet8:br-ex8"

 port_mappings: "ens3f0:br-ex,ens3f1:br-ex2,ens2f0:br-ex3,ens2f1:br-ex4,ens7f0:br-ex5,ens7f1:br-ex6,

ens6f0:br-ex7,ens6f1:br-ex8"

 cidr_mappings: "br-ex:10.100.4.63/24,br-ex2:10.100.5.63/24,br-ex3:10.100.6.63/24,br-ex4:10.100.7.63/24,

br-ex5:10.100.8.63/24,br-ex6:10.100.9.63/24,br-ex7:10.100.10.63/24,br-ex8:10.100.11.63/24"

 ovs_cores: 16,144,24,152,32,160,40,168,64,192,72,200,96,224,107,232

 pmd_cores: 21,22,23,29,30,31,37,38,39,45,46,47,69,70,71,77,76,79,101,102,103,109,110,111,145,146,147,

148,149,150,151,153,154,155,156,157,158,159,161,162,163,164,165,166,167,169,170,171,172,173,174,175,193,194,

195,196,197,198,199,201,202,203,204,205,206,207,225,226,227,228,229,230,231,233,234,235,236,237,238,239

 dpdk_interface_driver: "vfio-pci"

 interfaces:

 ens2f0:

 dpdk_interface_driver: "vfio-pci"

 interface_driver: "ice"

 ens2f1:

 dpdk_interface_driver: "vfio-pci"

 interface_driver: "ice"

 ens3f0:

 dpdk_interface_driver: "vfio-pci"

 interface_driver: "ice"

 ens3f1:

 dpdk_interface_driver: "vfio-pci"

 interface_driver: "ice"

 ens6f0:

 dpdk_interface_driver: "vfio-pci"

 interface_driver: "ice"

 ens6f1:

 dpdk_interface_driver: "vfio-pci"

 interface_driver: "ice"

 ens7f0:

 dpdk_interface_driver: "vfio-pci"

 interface_driver: "ice"

 ens7f1:

 dpdk_interface_driver: "vfio-pci"

 interface_driver: "ice"

These were the most relevant configurations done for our tests; for a complete and comprehensive guide to WhiteCloud DPDK

configuration, refer to the official documentation.

http://docs.intra.whitestack.com/whitecloud/yungay/guide/dpdk_configuration.html

through the Openstack CLI or WhiteCloud GUI, we used low level commands directly within these containers to create and configure virtual

machines and interfaces.

Test Concept

We desired to test if we were able to saturate the outgoing traffic of an Intel Network adapter of an 100Gb rate using the vCPUs from a

singe CCD. Since we had four network adapters available, we wanted to use four CCDs. Each CCD had vCPUs dedicated to different

tasks: four virtual CPUs for virtual machine computing, three vCPUs for DPDK vhost interfaces connected to the virtual machines, five

vCPUs dedicated to PMD threads and two vCPUs dedicated to OVS. This resulted in the following core distribution:

Each CCD worked in tandem with a single port of the nearest adapter.

Consequently, we wanted to generate traffic inside the VM cores, using the pktgen tool, and direct said traffic to an external network

through their DPDK vhost interfaces. To keep this process inside a single CCD, we kept the PMD threads of the DPDK vhost interfaces

pinned to the vCPUs reserved for them, so that only these vCPUs managed the traffic of their respective interface. The same was done for

the relevant OVS and PMD tasks, which were also pinned to the other cores in the same CCD.

Configuring the Test on WhiteCloud

First, we created the DPDK vhost interfaces, which provided connectivity to our VMs; we produced one interface for each DPDk vhost

vCPU shown in Figure 4. The virtual interfaces for our VMs were named after their respective CCD and the VM vCPU producing traffic for it,

i.e: ccd3_vhost0 was the interface in CCD3 that received traffic from the first vCPU of the VM in the same segment. This was achieved by

running the following commands ovs-vsctl inside the ovsdpdk_vswitchd container:

Figure 4 - vCPU Distribution

PKTGEN

Pktgen is a tool compiled with DPDK which allows generating traffic from a specific core/vCPU, and directing it to a specific

interface. This tool was used for our test in order to generate outbound traffic inside VMs. For our tests, we used an Ubuntu image

that came prepared with PDKD and pktgen , but for references on how to build pktgen from scratch, refer to the official

documentation.

1

2

3

4

5

6

7

8

9

10

~$ sudo docker exec -it -u root ovsdpdk_vswitchd bash

ovs-vsctl --no-wait add-port br-ex2 ccd3_vhost0 -- set Interface ccd3_vhost0 type=dpdkvhostuser \

options:dpdk-devargs="class=eth,mac=33.22.33.44.33:00"

ovs-vsctl --no-wait add-port br-ex2 ccd3_vhost1 -- set Interface ccd3_vhost1 type=dpdkvhostuser \

options:dpdk-devargs="class=eth,mac=33.22.33.44.33:01"

ovs-vsctl --no-wait add-port br-ex2 ccd3_vhost2 -- set Interface ccd3_vhost2 type=dpdkvhostuser \

options:dpdk-devargs="class=eth,mac=33.22.33.44.33:02"

ovs-vsctl --no-wait add-port br-ex4 ccd5_vhost0 -- set Interface ccd5_vhost0 type=dpdkvhostuser \

https://pktgen-dpdk.readthedocs.io/en/latest/getting_started.html
https://pktgen-dpdk.readthedocs.io/en/latest/getting_started.html
https://pktgen-dpdk.readthedocs.io/en/latest/getting_started.html

Afterwards, we required that each DPDK vhost interface was pinned to its designated vCPU. To do so, we set the attribute

other_config:pmd-rxq-affinity of each interface using the following commands:

Additionally, we applied the following DPDK configurations to OVS:

Next, we configured our physical interfaces and pinned their queues to their designated cores inside their respective CCDs:

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

options:dpdk-devargs="class=eth,mac=55.22.33.44.55:00"

ovs-vsctl --no-wait add-port br-ex4 ccd5_vhost1 -- set Interface ccd5_vhost1 type=dpdkvhostuser \

options:dpdk-devargs="class=eth,mac=55.22.33.44.55:01"

ovs-vsctl --no-wait add-port br-ex4 ccd5_vhost2 -- set Interface ccd5_vhost2 type=dpdkvhostuser \

options:dpdk-devargs="class=eth,mac=55.22.33.44.55:02"

ovs-vsctl --no-wait add-port br-ex6 ccd9_vhost0 -- set Interface ccd9_vhost0 type=dpdkvhostuser \

options:dpdk-devargs="class=eth,mac=99.22.33.44.99:00"

ovs-vsctl --no-wait add-port br-ex6 ccd9_vhost1 -- set Interface ccd9_vhost1 type=dpdkvhostuser \

options:dpdk-devargs="class=eth,mac=99.22.33.44.99:01"

ovs-vsctl --no-wait add-port br-ex6 ccd9_vhost2 -- set Interface ccd9_vhost2 type=dpdkvhostuser \

options:dpdk-devargs="class=eth,mac=99.22.33.44.99:02"

ovs-vsctl --no-wait add-port br-ex8 ccd13_vhost0 -- set Interface ccd13_vhost0 type=dpdkvhostuser \

options:dpdk-devargs="class=eth,mac=13.22.33.44.13:00"

ovs-vsctl --no-wait add-port br-ex8 ccd13_vhost1 -- set Interface ccd13_vhost1 type=dpdkvhostuser \

options:dpdk-devargs="class=eth,mac=13.22.33.44.13:01"

ovs-vsctl --no-wait add-port br-ex8 ccd13_vhost2 -- set Interface ccd13_vhost2 type=dpdkvhostuser \

options:dpdk-devargs="class=eth,mac=13.22.33.44.13:02"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ovs-vsctl --no-wait set Interface ccd3_vhost0 other_config:pmd-rxq-affinity="0:153"

ovs-vsctl --no-wait set Interface ccd3_vhost1 other_config:pmd-rxq-affinity="0:154"

ovs-vsctl --no-wait set Interface ccd3_vhost2 other_config:pmd-rxq-affinity="0:155"

ovs-vsctl --no-wait set Interface ccd5_vhost0 other_config:pmd-rxq-affinity="0:169"

ovs-vsctl --no-wait set Interface ccd5_vhost1 other_config:pmd-rxq-affinity="0:170"

ovs-vsctl --no-wait set Interface ccd5_vhost2 other_config:pmd-rxq-affinity="0:171"

ovs-vsctl --no-wait set Interface ccd9_vhost0 other_config:pmd-rxq-affinity="0:201"

ovs-vsctl --no-wait set Interface ccd9_vhost1 other_config:pmd-rxq-affinity="0:202"

ovs-vsctl --no-wait set Interface ccd9_vhost2 other_config:pmd-rxq-affinity="0:203"

ovs-vsctl --no-wait set Interface ccd13_vhost0 other_config:pmd-rxq-affinity="0:233"

ovs-vsctl --no-wait set Interface ccd13_vhost1 other_config:pmd-rxq-affinity="0:234"

ovs-vsctl --no-wait set Interface ccd13_vhost2 other_config:pmd-rxq-affinity="0:235"

1

2

3

4

5

6

7

8

9

10

11

12

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-socket-limit=20480

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-socket-mem=20480,0

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-extra="-n 8

-a 0000:21:00.0,mprq_en=1,mprq_log_stride_num=9,txq_inline_mpw=128,rxq_pkt_pad_en=1,mprq_tstore_memcpy=1

-a 0000:21:00.1,mprq_en=1,mprq_log_stride_num=9,txq_inline_mpw=128,rxq_pkt_pad_en=1,mprq_tstore_memcpy=1

-a 0000:41:00.0,mprq_en=1,mprq_log_stride_num=9,txq_inline_mpw=128,rxq_pkt_pad_en=1,mprq_tstore_memcpy=1

-a 0000:41:00.1,mprq_en=1,mprq_log_stride_num=9,txq_inline_mpw=128,rxq_pkt_pad_en=1,mprq_tstore_memcpy=1

-a 0000:a1:00.0,mprq_en=1,mprq_log_stride_num=9,txq_inline_mpw=128,rxq_pkt_pad_en=1,mprq_tstore_memcpy=1

-a 0000:a1:00.1,mprq_en=1,mprq_log_stride_num=9,txq_inline_mpw=128,rxq_pkt_pad_en=1,mprq_tstore_memcpy=1

-a 0000:e2:00.0,mprq_en=1,mprq_log_stride_num=9,txq_inline_mpw=128,rxq_pkt_pad_en=1,mprq_tstore_memcpy=1

-a 0000:e2:00.1,mprq_en=1,mprq_log_stride_num=9,txq_inline_mpw=128,rxq_pkt_pad_en=1,mprq_tstore_memcpy=1"

1

2

3

ovs-vsctl --no-wait set Interface ens2f1 options:n_txq_desc=4096

ovs-vsctl --no-wait set Interface ens2f1 options:n_rxq_desc=4096

ovs-vsctl --no-wait set Interface ens3f1 options:n_txq_desc=4096

Once our interfaces were created and configured, it was necessary to restart OVS to apply the changes. This is done in WhiteCloud by

running the deployer with the action: --action restart-ovs . Once restarted, we needed to add OVS flows that linked the traffic received

by the DPDK vhost interfaces to the physical interfaces in the same CCD, by running the following commands inside the

ovsdpdk_vswitchd container:

When the networking was done, we built virtual machines using a custom Ubuntu image, which had all the tools needed for our pre-

installed tests, and saved this image in this repository. We uploaded this image to the respective container use the docker cp command:

Then, inside the nova_libvirt container, we placed the image in a specific directory and made copies for each virtual machine we wished

to build:

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

ovs-vsctl --no-wait set Interface ens3f1 options:n_rxq_desc=4096

ovs-vsctl --no-wait set interface ens2f1 options:n_rxq=2

ovs-vsctl --no-wait set interface ens3f1 options:n_rxq=2

ovs-vsctl --no-wait set Interface ens6f1 options:n_txq_desc=4096

ovs-vsctl --no-wait set Interface ens6f1 options:n_rxq_desc=4096

ovs-vsctl --no-wait set Interface ens7f1 options:n_txq_desc=4096

ovs-vsctl --no-wait set Interface ens7f1 options:n_rxq_desc=4096

ovs-vsctl --no-wait set interface ens6f1 options:n_rxq=2

ovs-vsctl --no-wait set interface ens7f1 options:n_rxq=2

ovs-vsctl --no-wait set Interface ens2f1 other_config:pmd-rxq-affinity="0:45,1:46"

ovs-vsctl --no-wait set Interface ens3f1 other_config:pmd-rxq-affinity="0:29,1:30"

ovs-vsctl --no-wait set Interface ens6f1 other_config:pmd-rxq-affinity="0:109,1:110"

ovs-vsctl --no-wait set Interface ens7f1 other_config:pmd-rxq-affinity="0:77,1:78"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ovs-vsctl set Interface ens2f1 ofport_request=2001

ovs-vsctl set Interface ens3f1 ofport_request=3001

ovs-vsctl set Interface ens6f1 ofport_request=6001

ovs-vsctl set Interface ens7f1 ofport_request=7001

ovs-ofctl add-flow br-ex2 in_port=ccd3_vhost0,dl_type=0x800,idle_timeout=0,actions=output:3001

ovs-ofctl add-flow br-ex2 in_port=ccd3_vhost1,dl_type=0x800,idle_timeout=0,actions=output:3001

ovs-ofctl add-flow br-ex2 in_port=ccd3_vhost2,dl_type=0x800,idle_timeout=0,actions=output:3001

ovs-ofctl add-flow br-ex4 in_port=ccd5_vhost0,dl_type=0x800,idle_timeout=0,actions=output:2001

ovs-ofctl add-flow br-ex4 in_port=ccd5_vhost1,dl_type=0x800,idle_timeout=0,actions=output:2001

ovs-ofctl add-flow br-ex4 in_port=ccd5_vhost2,dl_type=0x800,idle_timeout=0,actions=output:2001

ovs-ofctl add-flow br-ex6 in_port=ccd9_vhost0,dl_type=0x800,idle_timeout=0,actions=output:7001

ovs-ofctl add-flow br-ex6 in_port=ccd9_vhost1,dl_type=0x800,idle_timeout=0,actions=output:7001

ovs-ofctl add-flow br-ex6 in_port=ccd9_vhost2,dl_type=0x800,idle_timeout=0,actions=output:7001

ovs-ofctl add-flow br-ex8 in_port=ccd13_vhost0,dl_type=0x800,idle_timeout=0,actions=output:6001

ovs-ofctl add-flow br-ex8 in_port=ccd13_vhost1,dl_type=0x800,idle_timeout=0,actions=output:6001

ovs-ofctl add-flow br-ex8 in_port=ccd13_vhost2,dl_type=0x800,idle_timeout=0,actions=output:6001

1 sudo docker cp ubuntu20_AMD_Tests.iso nova_libvirt:/

1

2

3

4

5

6

7

8

~ $ sudo docker exec -it -u root nova_libvirt bash

~ $mkdir /amd_tests

~ $mv ubuntu20_AMD_Tests.iso /amd_tests/

~ $cd amd_tests

~ $cp ubuntu20_AMD_Tests.iso ubuntu20_AMD_Tests2.iso

~ $cp ubuntu20_AMD_Tests.iso ubuntu20_AMD_Tests4.iso

~ $cp ubuntu20_AMD_Tests.iso ubuntu20_AMD_Tests6.iso

~ $cp ubuntu20_AMD_Tests.iso ubuntu20_AMD_Tests8.iso

https://storage.whitestack.com/whitecloud/ubuntu20_AMD_Tests.iso

Next, we created VMs inside nova_libvirt using these images and their respective DPDK vhost interfaces. Each VM only had interfaces

that were pinned inside the same CCD. This was done with the /usr/bin/qemu-system-x86_64 tool, which came included in the

nova_libvirt container:

These images are quite heavy, coming in at 5.7Gb for each. QEMU requires a separate image for each VM, so check your disk

space before generating the copies.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

VM CCD 3

/usr/bin/qemu-system-x86_64 -cpu host -smp cores=4 --enable-kvm -hda /amd_tests/ubuntu20_AMD_Tests2.iso \

-m 8192 -chardev socket,id=char1,path=/run/openvswitch/ccd3_vhost0 \

-netdev type=vhost-user,id=mynet1,chardev=char1,vhostforce,queues=1 -device \

virtio-net-pci,speed=100000,duplex=full,mac=52:55:00:d1:55:01,netdev=mynet1,mq=on,vectors=4,mrg_rxbuf=off \

-chardev socket,id=char11,path=/run/openvswitch/ccd3_vhost1 \

-netdev type=vhost-user,id=mynet11,chardev=char11,vhostforce,queues=1 -device \

virtio-net-pci,speed=100000,duplex=full,mac=52:55:00:d1:55:11,netdev=mynet11,mq=on,vectors=4,mrg_rxbuf=off \

-chardev socket,id=char2,path=/run/openvswitch/ccd3_vhost2 \

-netdev type=vhost-user,id=mynet2,chardev=char2,vhostforce,queues=1 -device \

virtio-net-pci,speed=100000,duplex=full,mac=52:55:00:d1:55:02,netdev=mynet2,mq=on,vectors=4,mrg_rxbuf=off \

-object memory-backend-file,id=mem,size=8G,mem-path=/dev/hugepages,share=on -numa node,memdev=mem \

-mem-prealloc -nic user,id=vmnic,hostfwd=tcp:127.0.0.1:5553-:22 -monitor telnet:127.0.0.1:55557,server,nowait \

-serial telnet:127.0.0.1:55558,server,nowait -name vm1,debug-threads=on --daemonize

VM CCD 5

/usr/bin/qemu-system-x86_64 -cpu host -smp cores=4 --enable-kvm -hda /amd_tests/ubuntu20_AMD_Tests4.iso \

-m 8192 -chardev socket,id=char1,path=/run/openvswitch/ccd5_vhost0 \

-netdev type=vhost-user,id=mynet1,chardev=char1,vhostforce,queues=1 -device \

virtio-net-pci,speed=100000,duplex=full,mac=52:55:00:d1:55:01,netdev=mynet1,mq=on,vectors=4,mrg_rxbuf=off \

-chardev socket,id=char11,path=/run/openvswitch/ccd5_vhost1 \

-netdev type=vhost-user,id=mynet11,chardev=char11,vhostforce,queues=1 -device \

virtio-net-pci,speed=100000,duplex=full,mac=52:55:00:d1:55:11,netdev=mynet11,mq=on,vectors=4,mrg_rxbuf=off \

-chardev socket,id=char2,path=/run/openvswitch/ccd5_vhost2 \

-netdev type=vhost-user,id=mynet2,chardev=char2,vhostforce,queues=1 -device \

virtio-net-pci,speed=100000,duplex=full,mac=52:55:00:d1:55:02,netdev=mynet2,mq=on,vectors=4,mrg_rxbuf=off \

-object memory-backend-file,id=mem,size=8G,mem-path=/dev/hugepages,share=on -numa node,memdev=mem \

-mem-prealloc -nic user,id=vmnic,hostfwd=tcp:127.0.0.1:5555-:22 -monitor telnet:127.0.0.1:55561,server,nowait \

-serial telnet:127.0.0.1:55562,server,nowait -name vm3,debug-threads=on --daemonize

VM CCD 9

/usr/bin/qemu-system-x86_64 -cpu host -smp cores=4 --enable-kvm -hda /amd_tests/ubuntu20_AMD_Tests6.iso \

-m 8192 -chardev socket,id=char1,path=/run/openvswitch/ccd9_vhost0 \

-netdev type=vhost-user,id=mynet1,chardev=char1,vhostforce,queues=1 -device \

virtio-net-pci,speed=100000,duplex=full,mac=52:55:00:d1:55:01,netdev=mynet1,mq=on,vectors=4,mrg_rxbuf=off \

-chardev socket,id=char11,path=/run/openvswitch/ccd9_vhost1 \

-netdev type=vhost-user,id=mynet11,chardev=char11,vhostforce,queues=1 -device \

virtio-net-pci,speed=100000,duplex=full,mac=52:55:00:d1:55:11,netdev=mynet11,mq=on,vectors=4,mrg_rxbuf=off \

-chardev socket,id=char2,path=/run/openvswitch/ccd9_vhost2 \

-netdev type=vhost-user,id=mynet2,chardev=char2,vhostforce,queues=1 -device \

virtio-net-pci,speed=100000,duplex=full,mac=52:55:00:d1:55:02,netdev=mynet2,mq=on,vectors=4,mrg_rxbuf=off \

-object memory-backend-file,id=mem,size=8G,mem-path=/dev/hugepages,share=on -numa node,memdev=mem\

-mem-prealloc -nic user,id=vmnic,hostfwd=tcp:127.0.0.1:5557-:22 -monitor telnet:127.0.0.1:55565,server,nowait \

-serial telnet:127.0.0.1:55566,server,nowait -name vm5,debug-threads=on --daemonize

VM CCD 13

/usr/bin/qemu-system-x86_64 -cpu host -smp cores=4 --enable-kvm -hda /amd_tests/ubuntu20_AMD_Tests8.iso \

-m 8192 -chardev socket,id=char1,path=/run/openvswitch/ccd13_vhost0 \

-netdev type=vhost-user,id=mynet1,chardev=char1,vhostforce,queues=1 -device\

virtio-net-pci,speed=100000,duplex=full,mac=52:55:00:d1:55:01,netdev=mynet1,mq=on,vectors=4,mrg_rxbuf=off \

-chardev socket,id=char11,path=/run/openvswitch/ccd13_vhost1 \

-netdev type=vhost-user,id=mynet11,chardev=char11,vhostforce,queues=1 -device \

virtio-net-pci,speed=100000,duplex=full,mac=52:55:00:d1:55:11,netdev=mynet11,mq=on,vectors=4,mrg_rxbuf=off \

One important observation in these commands is the -serial option. This option allowed us to open a port in the local direction and bind it

to the VM console. This port lets us access the VMs via a telnet command. For example: for the first VM the command contains -serial

telnet:127.0.0.1:55558,server,nowait : this means that to access this VM we used the command telnet localhost 55556 . By

default, our image had the root:root user configured for access.

Once the VMs were up and running, we pinned their processes to the cores we had reserved for them. These cores had to be on the same

CCD on which their interface are pinned. We achieved this pinning through the quemu-affinity tool.

Finally, necessary to run our tests, we needed to configure a new static MAC direction on the Dell switches MAC address table, considering

we had to configure the generated packages with a real MAC destination, so that the generated traffic was properly directed to the

switches. To achieve this, we ran these commands on both switches:

51

52

53

54

55

56

-chardev socket,id=char2,path=/run/openvswitch/ccd13_vhost2 \

-netdev type=vhost-user,id=mynet2,chardev=char2,vhostforce,queues=1 -device \

virtio-net-pci,speed=100000,duplex=full,mac=52:55:00:d1:55:02,netdev=mynet2,mq=on,vectors=4,mrg_rxbuf=off \

-object memory-backend-file,id=mem,size=8G,mem-path=/dev/hugepages,share=on -numa node,memdev=mem \

-mem-prealloc -nic user,id=vmnic,hostfwd=tcp:127.0.0.1:5559-:22 -monitor telnet:127.0.0.1:55569,server,nowait \

-serial telnet:127.0.0.1:55570,server,nowait -name vm7,debug-threads=on --daemonize

You might need to install telnet using apt-get :

sudo apt-get update

sudo apt-get install telnet

1

2

3

4

5

6

7

8

9

10

11

telnet localhost 55558

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Ubuntu 18.04.3 LTS test-dpdk ttyS0

test-dpdk login: root

Password:

root@test-dpdk:~#

You might need to install qemu-affinity using pip : pip3 install qemu-affinity

1

2

3

4

5

6

7

8

qemu-affinity -v -k 17 18 19 20 -- $(ps -aux | grep -e qemu | grep -e vm0 | grep -v 'grep' | awk '{print $2}')

qemu-affinity -v -k 25 26 27 28 -- $(ps -aux | grep -e qemu | grep -e vm1 | grep -v 'grep' | awk '{print $2}')

qemu-affinity -v -k 33 34 35 36 -- $(ps -aux | grep -e qemu | grep -e vm2 | grep -v 'grep' | awk '{print $2}')

qemu-affinity -v -k 41 42 43 44 -- $(ps -aux | grep -e qemu | grep -e vm3 | grep -v 'grep' | awk '{print $2}')

qemu-affinity -v -k 65 66 67 68 -- $(ps -aux | grep -e qemu | grep -e vm4 | grep -v 'grep' | awk '{print $2}')

qemu-affinity -v -k 73 74 75 76 -- $(ps -aux | grep -e qemu | grep -e vm5 | grep -v 'grep' | awk '{print $2}')

qemu-affinity -v -k 97 98 99 100 -- $(ps -aux | grep -e qemu | grep -e vm6 | grep -v 'grep' | awk '{print $2}')

qemu-affinity -v -k 105 106 107 108 -- $(ps -aux | grep -e qemu | grep -e vm7 | grep -v 'grep' | awk '{print $2}'

1

2

3

configure terminal

mac-address-table static 52:55:00:d1:55:04 vlan 1 interface ethernet 1/1/4

end

This configuration is mandatory as we need a real external address for our packages to be sent to the switches. Otherwise,

packages will be dropped by OVS and skew the tests measurements.

Running the Tests | Pktgen

Once our VMs were up and running using our DPDK vhost interfaces, the flows in OVS provided connectivity to the physical interfaces and

everything was pinned to its designated vCPUs, we were ready to start generating traffic inside the VMs and measure the amount of

packages being output.

First, we had to enter each of the VMs and carry out the following commands:

1. Bind every vhost interface into DPDK mode:

2. Set up hugepages for pktgen :

3. Start pktgen:

Here we can see that we assigned one vCPU to each interface, leaving one vCPU to be the main-lcore .

Once this commands were run, we were left with the four VMs showing the pktgen console:

1

2

3

sudo ./dpdk-devbind.py -b igb_uio 00:04.0

sudo ./dpdk-devbind.py -b igb_uio 00:05.0

sudo ./dpdk-devbind.py -b igb_uio 00:06.0

1 dpdk-hugepages.py --setup 4G

1 pktgen -l 0,1,2,3 --main-lcore 3 -a 00:04.0 -a 00:05.0 -a 00:06.0 -- -P -m "0.0,1.1,2.2"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

\ Ports 0-2 of 3 <Main Page> Copyright(c) <2010-2021>, Intel Corporation

 Flags:Port : P------Sngl :0 P------Sngl :1 P------Sngl :2

Link State : <UP-100000-FD> <UP-100000-FD> <UP-100000-FD> ---Total Rate---

Pkts/s Rx : 0 0 0 0

 Tx : 0 0 0 0

MBits/s Rx/Tx : 0/0 0/0 0/0 0/0

Pkts/s Rx Max : 1 1 1 3

 Tx Max : 0 0 0 0

Broadcast : 0 0 0

Multicast : 1 2 3

Sizes 64 : 0 0 0

 65-127 : 0 0 0

 128-255 : 0 0 0

 256-511 : 1 2 3

 512-1023 : 0 0 0

 1024-1518 : 0 0 0

Runts/Jumbos : 0/0 0/0 0/0

ARP/ICMP Pkts : 0/0 0/0 0/0

Errors Rx/Tx : 0/0 0/0 0/0

Total Rx Pkts : 1 1 1

 Tx Pkts : 0 0 0

 Rx/Tx MBs : 0/0 0/0 0/0

TCP Flags : .A.... .A.... .A....

TCP Seq/Ack : 305419896/305419920 305419896/305419920 305419896/305419920

Pattern Type : abcd... abcd... abcd...

Tx Count/% Rate : Forever /100% Forever /100% Forever /100%

Pkt Size/Tx Burst : 64 / 128 64 / 128 64 / 128

TTL/Port Src/Dest : 64/ 1234/ 5678 64/ 1234/ 5678 64/ 1234/ 5678

Pkt Type:VLAN ID : IPv4 / TCP:0001 IPv4 / TCP:0001 IPv4 / TCP:0001

802.1p CoS/DSCP/IPP : 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0

VxLAN Flg/Grp/vid : 0000/ 0/ 0 0000/ 0/ 0 0000/ 0/ 0

IP Destination : 192.168.1.1 192.168.0.1 192.168.3.1

 Source : 192.168.0.1/24 192.168.1.1/24 192.168.2.1/24

MAC Destination : 52:55:00:d1:55:11 52:55:00:d1:55:01 00:00:00:00:00:00

Before we started generating traffic, we had to configure pktgen so that it generated the class of packages that best served our needs. We

needed to test UPD packages and wished to set their MTU to 1500 , to make it easier to saturate the interfaces while using less packages.

Finally, we wanted to set the destination of these packages to the MAC address we previously added to our switches' MAC address-table:

52:55:00:d1:55:04 . All these configuration were applied with the following commands on all VMs:

We confirmed these configurations by verifying that the respective info had been updated on the pktgen console:

35

36

37

38

39

 Source : 52:55:00:d1:55:01 52:55:00:d1:55:11 52:55:00:d1:55:02

PCI Vendor/Addr : 1af4:1000/00:04.0 1af4:1000/00:05.0 1af4:1000/00:06.0

-- Pktgen 22.04.1 (DPDK 23.03.0-rc0) Powered by DPDK (pid:2158) -------------

** Version: DPDK 23.03.0-rc0, Command Line Interface without timers

Pktgen:/>

1

2

3

set all proto udp

set all size 1500

set all dst mac 52:55:00:d1:55:04

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

\ Ports 0-2 of 3 <Main Page> Copyright(c) <2010-2021>, Intel Corporation

 Flags:Port : P------Sngl :0 P------Sngl :1 P------Sngl :2

Link State : <UP-100000-FD> <UP-100000-FD> <UP-100000-FD> ---Total Rate---

Pkts/s Rx : 0 0 0 0

 Tx : 0 0 0 0

MBits/s Rx/Tx : 0/0 0/0 0/0 0/0

Pkts/s Rx Max : 1 1 1 3

 Tx Max : 0 0 0 0

Broadcast : 0 0 0

Multicast : 19 38 57

Sizes 64 : 0 0 0

 65-127 : 1 2 3

 128-255 : 0 0 0

 256-511 : 19 38 57

 512-1023 : 0 0 0

 1024-1518 : 0 0 0

Runts/Jumbos : 0/0 0/0 0/0

ARP/ICMP Pkts : 0/0 0/0 0/0

Errors Rx/Tx : 0/0 0/0 0/0

Total Rx Pkts : 20 20 20

 Tx Pkts : 0 0 0

 Rx/Tx MBs : 0/0 0/0 0/0

TCP Flags : .A.... .A.... .A....

TCP Seq/Ack : 305419896/305419920 305419896/305419920 305419896/305419920

Pattern Type : abcd... abcd... abcd...

Tx Count/% Rate : Forever /100% Forever /100% Forever /100%

Pkt Size/Tx Burst : 1500 / 128 1500 / 128 1500 / 128 # <------ MTU 1500

TTL/Port Src/Dest : 64/ 1234/ 5678 64/ 1234/ 5678 64/ 1234/ 5678

Pkt Type:VLAN ID : IPv4 / UDP:0001 IPv4 / UDP:0001 IPv4 / UDP:0001 # <------ UPD PROTO

802.1p CoS/DSCP/IPP : 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0

VxLAN Flg/Grp/vid : 0000/ 0/ 0 0000/ 0/ 0 0000/ 0/ 0

IP Destination : 192.168.1.1 192.168.0.1 192.168.3.1

 Source : 192.168.0.1/24 192.168.1.1/24 192.168.2.1/24

MAC Destination : 52:55:00:d1:55:04 52:55:00:d1:55:04 52:55:00:d1:55:04 # <------ MAC DST

 Source : 52:55:00:d1:55:01 52:55:00:d1:55:11 52:55:00:d1:55:02

PCI Vendor/Addr : 1af4:1000/00:04.0 1af4:1000/00:05.0 1af4:1000/00:06.0

-- Pktgen 22.04.1 (DPDK 23.03.0-rc0) Powered by DPDK (pid:2158) -------------

** Version: DPDK 23.03.0-rc0, Command Line Interface without timers

Pktgen:/>

After all these configurations were executed, we were ready to start generating traffic from the VMs. Having every vCPU start generating

traffic at the same time proved to be a strenuous action for OVS, as we would observe packages being dropped in this case. This meant

that we had to start generating traffic one vCPU at a time, waiting for a minute before moving on to the next vCPU. This was done in the

following order:

1. Enter a VM using telnet and launch pktgen .

 a. Start traffic on the first core, then wait for a minute: start 0

 b. Repeat for other cores with start 1 , and start 2

2. Repeat for the rest of the VMs

Another important observation is that, on CCDs 9 and 13, greater traffic was achieved when generating traffic from just two cores than from

three. The reasons for this behavior are still being studied, but we theorize that some cores must have a better performance than others

and that generating traffic from an under-performing core might be detrimental to the total result.

Once we completed these steps, we had successfully started generating traffic from our VMs. At this point, we used WhiteCloud’s own

Prometheus server, an open source monitoring system included with our distribution, to observe and record the traffic transiting through

each interface. These results will be presented in the following section.

Results

First, we can see in the following graph how the traffic in each interface evolved while starting the generation in each vCPU:

Figure 5 shows us the traffic running through each interface in our lab’s environment. At the beginning of the test we started generating

traffic gradually until every vCPU was generating traffic for its interface, between 10:00 and 12:30 on the graph. At this point, we had two

of our physical interfaces near saturation (~90Bib/s), while the other two maintained less traffic in an inconsistent manner. From this point

up until 14:30 , we tweaked the tests configurations in order to achieve greater traffic, both on each interface and as a total. This is were

most of the previously exposed configurations were settled on.

A turning point can be seen at 14:30 , when we discovered that certain vCPUS generating traffic were negatively affecting the results. The

moment traffic generation was stopped for these vCPUs, the traffic in their respective physical interfaces increased and matched the traffic

achieved by the other two interfaces initially. After these changes were made and enough time was given for the traffic to stabilize, we saw

that our DPDK dataplane was able to transport traffic from the DPDK vhost interfaces to the physical interfaces at a rate nearing the

maximum allowed by the network adapters.

Figure 5 - Network Traffic (Gib/s)

Each physical interface maintains a traffic of 91.7Gib/s , meaning, the DPDK dataplane is able to handle an outgoing traffic of a total of

367Gib/s , nearly 92% of the maximum allowed by the network adapters. The total outbound traffic and its evolution during the test can be

seen above on Figure 6.

For a second test, we wished to understand how OVS would handle traffic of different MTU. To do so, we repeated the previous experiment,

but on this occasion we configured pktgen to generate packages of MTU 64 .After starting traffic generation, and waiting for traffic to

stabilize, we increased the MTU to 1500. Again, we waited for traffic to stabilize before lowering the MTU one last time to 64. The behavior

of the traffic across interfaces during this test can be seen in the graph below.

As expected, Figure 7 shows how traffic comprised of MTU 64 packages stabilizes on each physical interface at approximately 10Gib/s .

Traffic then spikes when package size is increased to 1500 , reaching the previously achieved volume of traffic. Here we note again that in

order to achieve this amount of traffic, traffic generation had to be stop on certain vCPUs. Finally, when returning packages to their original

MTU, we see traffic returning too to its original condition. Whats is interesting to observe is then the amount of individual packages being

transported, instead of the total size of traffic. This is shown on the graph below.

The behavior of traffic measured in pkt/s is a direct inversion of traffic measured in Gib/s . This is shown in Figure 8, were the total

amount of packages of MTU 64 being transported by each physical interfaces reaches ~23Mp/s , with each individual virtual interface

handling ~7.5Mp/s . This values dip when increasing, to ~8Mp/s and ~4Mps/s respectively. After reverting the changes to packet size, the

amount of packages transported increases again. Seeing this, combined with the amount of packet drops per interface, gives us a good

Figure 6 - Total Outbound Network Traffic

Figure 7 - Network Traffic MTU Test (Gib/s)

Figure 8 - Network Traffic MTU test (pkt/s)

insight into the capabilities of OVS with DPDK.

From Figure 9 we can observe that at the beginning of our second test, no drops of packages were occurring. Only when the MTU of the

packages was increased to 1500 we started noticing drops, although, the drops were only present on physical interfaces. Drops then

disappear when returning the packages to their original size. We can deduce from this fact that our DPDK dataplane is more than able to

manage an amount of traffic larger than the network adapter's maximum. This can be seen as no drops occur in the virtual interfaces,

meaning that DPDK is able to correctly transport the totality of packages being generated into the physical interfaces with no errors. Its only

when the packages try to leave the server through the physical interfaces that we see drops, meaning that DPDK is able to manage more

traffic than the physical interfaces are able to transport.

Considering that our dataplane is unnerved while handling heavy packages and knowing that it can also handle a much greater amount of

individual packages, as per our MTU 64 test, it is sensible to hypothesize that if we installed more network adapters on the server we could

reach an even greater volume of outbound traffic while using the same amount of vCPUs.

Finally, we should take a look at the CPU usage during our MTU test.

As exposed in Figure 10, the processor usage from cores where the DPDK vhost interfaces are pinned, immediately reaches 100% when

generating packages and stays the same throughout the experiment 's duration (except for vCPUs that were turned off in the MTU 1500

section of the test). We think this can be explained by two possible scenarios. First, all vCPUs handling traffic are currently at their limit

during these tests, meaning that the installation of new network adapters could only increase the total amount of outbound traffic by the

amount of drops being seen with MTU 1500 packages. Or a second, more optimistic, scenario might be that OVS is constantly checking

the RX queue, creating the illusion that the processor is operating at maximum capacity, reaching 100% ; meaning that the amount of

additional traffic we could achieve by using more network adapter might be even greater than expected!

Conclusion | Next Steps

As shown in this report, during the course of our tests we designed and configured an environment with the virtualization tools needed to

launch virtual machines, generate packages on them and direct this traffic to an external network. This environment allowed us to test the

traffic capabilities of OVS with a DPDK dataplane.

Figure 9 - Packet Drops MTU Test

Figure 10 - PMD Processing CPU Usage

Our test showed that our architecture is able to handle a large volume of traffic originating from the VMs, transporting outbound packages

efficiently and without drops, to the point of saturation of physical interfaces, which, by design, can not handle this amount of traffic and start

dropping packages. Also, our tests with packages of MTU 64 indicate that OVS can manage a much greater amount of individual

packages than what is observed with packages of MTU 1500 .

Since, currently, our main limit in the amount of traffic reaching the exterior of the server is the data rate of the installed network adapters,

and no drops are being seen on virtual interfaces, the next logical step is to repeat this test using the same amount of vCPUs for generation

and transportation of packages, but doing so while installing more network adapters. This would allow us to investigate the real limitations

OVS has and how much traffic can be handled before we start seeing drops on virtual interfaces.

Following the same train of thought, if we are to repeat these experiments using more network adapters, it would also be natural to increase

the amount of vCPUs in use too. Taking the configurations done in only four CCDs for this experiments, and replicating them for every CCD

on the server would show us how much traffic we could generate and export from a single server. Based on the results presented in this

report, and considering that this server has five slots for network adapters, if we were to fill all slots with 200Gb dual port network adapters,

we are confident that we should achieve a total amount of outbound traffic of approximately 920Gib/s .

These are encouraging results, which showcase the deployed architecture’s ability to handle sustained heavy traffic while providing enough

new questions to inspire new research around the subject.

